Long-term trends and extreme events of marine heatwaves in the Eastern China Marginal Seas during summer

Author:

Xu Jing,Yan Yunwei,Zhang Lei,Xing Wen,Meng Linxi,Yu Yi,Chen Changlin

Abstract

Marine heatwaves (MHWs) are a type of widespread, persistent, and extreme marine warming event that can cause serious harm to the global marine ecology and economy. This study provides a systematic analysis of the long-term trends of MHWs in the Eastern China Marginal Seas (ECMS) during summer spanning from 1982 to 2022, and occurrence mechanisms of extreme MHW events. The findings show that in the context of global warming, the frequency of summer MHWs in the ECMS has increased across most regions, with a higher rate along the coast of China. Areas exhibiting a rapid surge in duration predominantly reside in the southern Yellow Sea (SYS) and southern East China Sea (ECS, south of 28°N). In contrast, the long-term trends of mean and maximum intensities exhibit both increases and decreases: Rising trends primarily occur in the Bohai Sea (BS) and Yellow Sea (YS), whereas descending trends are detected in the northern ECS (north of 28°N). Influenced jointly by duration and mean intensity, cumulative intensity (CumInt) exhibits a notable positive growth off the Yangtze River Estuary, in the SYS and southern ECS. By employing the empirical orthogonal function, the spatio-temporal features of the first two modes of CumInt and their correlation with summer mean sea surface temperature (SST) and SST variance are further examined. The first mode of CumInt displays a positive anomalous pattern throughout the ECMS, with notable upward trend in the corresponding time series, and the rising trend is primarily influenced by summer mean SST warming. Moreover, both of the first two modes show notable interannual variability. Extreme MHW events in the SYS in 2016 and 2018 are examined using the mixed layer temperature equation. The results suggest that these extreme MHW events originate primarily from anomalous atmospheric forcing and oceanic vertical mixing. These processes involve an anomalous high-pressure system over the SYS splitting from the western Pacific subtropical high, augmented atmospheric stability, diminished wind speeds, intensified solar radiation, and reduced oceanic mixing, thereby leading to the accumulation of more heat near the sea surface and forming extreme MHW events.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3