Symbiotic Dinoflagellates of the Giant Clam, Tridacna squamosa, Express Ammonium Transporter 2 at the Plasma Membrane and Increase Its Expression Levels During Illumination

Author:

Pang Caryn Z.,Boo Mel V.,Ip Yuen K.,Chew Shit F.

Abstract

Giant clams harbor dinoflagellates generally of the three genera (Symbiodinium, Cladocopium, and Durusdinium) of phototrophic Symbiodiniaceae. Coccoid dinoflagellates (alias zooxanthellae) are found mainly inside zooxanthellal tubules located in the colorful outer mantle. The symbionts need to obtain carbon, nitrogen and phosphorus from the host for growth and metabolism. The host can absorb exogenous ammonia through the ctenidium and assimilate it into glutamine. Although the host does not normally excrete ammonia, its hemolymph contains only low concentrations of ammonia, indicating that the symbionts can absorb and recycle the ammonia produced metabolically by the host. In this study, we had obtained from the outer mantle of the giant clam, Tridacna squamosa, three major ammonium transporter 2 (AMT2) sequences, one each for Symbiodinium spp. (Symb-AMT2), Cladocopium spp. (Clad-AMT2), and Durusdinium spp. (Duru-AMT2), which comprised 1341 bp, 1308 bp, and 1296 bp, respectively. The respective deduced amino acid sequences contained 447 (~ 46.5 kDa), 436 (~ 45.5 kDa), and 432 (~ 45.0 kDa) residues. Phenogramic and sequence similarity analyses confirmed that these sequences were derived from dinoflagellates. Zooxanthellae-AMT2 (Zoox-AMT2), which represented comprehensively AMT2 of Symbiodinium spp., Cladocopium spp., and Durusdinium spp. was localized at the dinoflagellates’ plasma membranes, indicating that it could partake in the absorption of ammonia from the luminal fluid of the zooxanthellal tubules. Zoox-AMT2 expression was detected in the outer mantle, inner mantle, foot muscle, hepatopancreas and ctenidium of T. squamosa, indicating that the coccoid dinoflagellates residing in all five organs had the potential of ammonia absorption. The outer mantle had the highest transcript level of Zoox-AMT2, and illumination upregulated the protein abundance of Zoox-AMT2 therein. Therefore, it can be deduced that the coccoid dinoflagellates residing in the outer mantle could augment the potential of ammonia absorption in alignment with photosynthesis as the assimilation of ammonia required an increased supply of carbon chains.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3