Dynamics of extracellular polymeric substances and soil organic carbon with mangrove zonation along a continuous tidal gradient

Author:

Liu Dong-Xi,Mai Zhi-Mao,Sun Cui-Ci,Zhou Yan-Wu,Liao Hui-Huang,Wang You-Shao,Cheng Hao

Abstract

The importance of mangroves in blue carbon storage has been widely reported. However, the potential contribution of microbial extracellular polymeric substances (EPS) to the carbon pool is still poorly understood in mangrove ecosystems. Thus, a natural mangrove reserve located in Gaoqiao was chosen to investigate the linkage between microbial EPS and sediment organic carbon. Sequential resin extraction, Fourier transform infrared spectroscopy (FTIR), and 16S high-throughput sequencing were employed to determine the variations in EPS and bacterial taxa in different mangrove communities. Both EPS and EPS-C increased significantly with mangrove zonation from seaward to landward, irrespective of the EPS subfractions (colloidal and bound EPS) and components (extracellular protein and polysaccharide). Moreover, both EPS and EPS-C were found to be positively correlated with soil organic carbon. The present data further showed that EPS-C accounted for 1.84~10.69% of TOC in surface sediments. Multiple functional groups (e.g., O-H, N-H, and C=O), which may provide ligands for particle adsorption and complexation, were identified by FTIR. Consistent with the ascend of EPS with mangrove zonation from seaward to landward, the highest transmittance intensity for all functional groups was consistently exhibited in EPS isolated from landward Rhizophoraceae forest. In addition, the present data also indicated an interesting positive linkage between EPS and the abundance of some specific bacterial taxa, such as Rhizobiales, Corynebacteriales, and Gaiellales. In summary, this study claims the importance of EPS in the carbon pool in mangrove ecosystems. The present study may provide a better understanding of the functions of mangroves in carbon stocks.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3