Climate change impacts on river discharge to the Sea of Marmara

Author:

Basdurak Berkay Nüvit

Abstract

The Sea of Marmara, located in Northwestern Türkiye, is under multiple stressors, including climate change and industrial, agricultural, and domestic pollution, that cause deoxygenation in coastal waters, with multiregional consequences affecting the surface and deep-water masses transported to the Mediterranean and Black Seas, respectively, via its straits. With climate-change driven changes in the intensity of extreme precipitation events, the marine environment becomes more vulnerable to increasing terrestrial pollutants. Evaluating the spatial and temporal variation of river runoff is crucial to understanding the interaction between the geophysical and hydrogeochemical processes that affects the nutrient balance of the sea. This study aims to (i) explore the historical (for the period 1960-2021) and spatial changes of monthly-averaged coastal discharges along the coastline of the Sea of Marmara for the first time, based on observations from the national hydrological service; (ii) analyze the change in long-term and seasonal trends of runoff and net-precipitation rate and derive a regional relation between the two parameters. Single Spectrum Analysis (SSA) is used to obtain the trends. Gaps in the time series are filled in using a non-parametric spectral estimation method. Discharges from the northern, eastern, and southern basins are, respectively, 3%, 17%, and 80% of the total discharge, which has varied between 1.5 and 15 km3 per year in the last decade, with short-lived extremes occurring in early spring. Total runoff rate shows a declining long-term trend that is accelerating with increasing evaporation. The intensity of the terrestrial precipitation extremes shows a temporal increase; there is a quadratic relation between the long-term trends of net precipitation and total runoff. Quantification of nutrient load distribution along the coastline associated with the spatial-temporal changes in coastal fluxes is urgent because the cumulative stressors (warming, nutrient overenrichment, pollutants) pose a threat of triggering extreme events and eutrophication in the Sea of Marmara with multiregional impact.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3