Temporal Variability in Acoustic Behavior of Snapping Shrimp in the East China Sea and Its Correlation With Ocean Environments

Author:

Lee Dae Hyeok,Choi Jee Woong,Shin Sungwon,Song H. C.

Abstract

The snapping shrimp sound is known to be a major biological noise source of ocean soundscapes in coastal shallow waters of low and mid-latitudes where sunlight reaches. Several studies have been conducted to understand the activity of snapping shrimp through comparison with surrounding environmental factors. In this paper, we report the analysis of the sound produced by snapping shrimp inhabiting an area where sunlight rarely reaches. The acoustic measurements were taken in May 2015 using two 16-channel vertical line arrays (VLAs) moored at a depth of about 100 m, located ∼100 km southwest of Jeju Island, South Korea, as part of the Shallow-water Acoustic Variability Experiment (SAVEX-15). During the experiment, the underwater soundscape was dominated by the broadband impulsive snapping shrimp noise, which is notable considering that snapping shrimp are commonly observed at very shallow depths of tens of meters or less where sunlight can easily reach. To extract snapping events in the ambient noise data, an envelope correlation combined with an amplitude threshold detection algorithm were applied, and then the sea surface-bounced path was filtered out using a kurtosis value of the waveform to avoid double-counting in snap rate estimates. The analysis of the ambient noise data received for 5 consecutive days indicated that the snap rate fluctuated with a strong one-quarter-diurnal variation between 200 and 1,200 snaps per minute, which is distinguished from the periodicity of the snap rate reported in the euphotic zone. The temporal variation in the snap rate is compared with several environmental factors such as water temperature, tidal level, and current speed. It is found that the snap rate has a significant correlation with the current speed, suggesting that snapping shrimp living in the area with little sunlight might change their snapping behavior in response to changes in current speed.

Funder

National Research Foundation of Korea

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3