Nitrogen Enrichment Reduces the Diversity of Bacteria and Alters Their Nutrient Strategies in Intertidal Zones

Author:

Xu Yuan-Feng,Dong Xu-Meng,Luo Cheng,Ma Shuo-Nan,Xu Ji-Lin,Cui Yong-De

Abstract

Intertidal ecosystems are affected by severe nitrogen (N) pollution as a result of anthropogenic activities, and it is unclear how this may affect intertidal microbial communities, which play critical roles in regulating biogeochemical cycles. To address this gap, we conducted a two-month mesocosm experiment using six targeted concentrations of total N. The findings indicated that N entering seawaters has direct negative effects on the bacterial diversity. Dose dependence was found for the effects of N on bacterial diversity in sediment: low N addition increased the bacterial diversity, but a reduction in bacterial diversity occurred when N exceeded a certain value (≥ 3 mg L−1). Additionally, N enrichment caused clear shifts in bacterial community composition with increases in the relative abundance of Balneola (organic-degrading), Phalacroma mitra (carbohydrate-fermenting), and Bacteroides (phosphorus (P)-solubilizing), and decreases in Leptolyngbya_PPC_6406 (N2-fixing). The increased abundance in P-solubilizing and organic-degrading bacteria and decrease in N-fixing bacteria, combined with the upregulated activity of alkaline phosphatase and downregulation of urease activity, implied that the bacterial assemblage tended to be more effective in P and carbon acquisition but reduced N acquisition. Further path analysis suggested that N had direct effects on bacteria and contributed 50%–100% to the variations in bacterial diversity, whereas environmental changes such as dissolved oxygen and pH played minor roles. Overall, bacteria occurring in sediment were likely more stress-resistant to high N exposure than those occurring in seawater, possibly due to the high buffering capacity of sediment and growth tolerances of bacteria in the sediment. These findings point to the vulnerability of microbes in water systems to increasing global N loading, and that N reduction is needed to combat the loss of microbial diversity.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3