Changes in the Bacterial Community Associated With Experimental Symbiont Loss in the Mucus Layer of Cassiopea xamachana Jellyfish

Author:

Carabantes Natalia,Cerqueda-García Daniel,García-Maldonado José Q.,Thomé Patricia E.

Abstract

Cassiopea xamachana is a model system for studies in animal symbiosis with algal symbionts. This medusa is also associated with a microbial community that can impact its health, but this community has not been thoroughly studied. Shifts in the bacterial community following the loss of symbionts involving stress, environmental changes, or seasonal fluctuations can be complex, as the role of symbionts in structuring this community is not well established. To understand the interplay among microbial associates with this host, we explored the experimental diminishing of algal symbionts, and the influence of seasonal fluctuations over the structure of the bacterial community, through 16S rRNA gene high-throughput sequencing. Results showed that Gammaproteobacteria, Bacteroidia, and Alphaproteobacteria were dominant in all the mucus samples at the beginning of the experiments. However, after 28 days, bleached medusas showed a marked increase in Gammaproteobacteria, specifically in the genus Vibrio, as evidenced by Linear Discriminant Analysis of Effect Size (LEfSe). Seasons also resulted in shifts of the bacterial community, although bacterial genera were distinct from those found in bleached medusas, suggesting temporal associations with the host. According to PERMANOVA analysis, seasonal fluctuations affected the dominant bacterial members (p = 0.07), but symbiont presence was a more significant driver (p=0.001). We found the bacterial community of C. xamachana is like that of other jellyfish and corals, which furthers the interest in this animal as a study model. Defining relevant bacterial genera can help us understand the functional role of the holobiont members that assemble and maintain a healthy microbial community. Also, studies in other regions where C. xamachana distributes can help us define a core bacterial community for this medusa.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3