Invasion and Extirpation Potential of Native and Invasive Spartina Species Under Climate Change

Author:

Borges Francisco O.,Santos Catarina P.,Paula José R.,Mateos-Naranjo Enrique,Redondo-Gomez Susana,Adams Janine Barbara,Caçador Isabel,Fonseca Vanessa F.,Reis-Santos Patrick,Duarte Bernardo,Rosa Rui

Abstract

Coastal areas host some of the planet’s most productive ecosystems, providing life-sustaining ecological services and several benefits to humankind, while also being some of the most threatened areas (e.g., by globalization, climate change, and biological invasion). Salt marshes are coastal habitats with a key role in food and shelter provisioning, sediment deposition, nutrient cycling and carbon storage. Spartina spp. is a genus of grass halophytes which occurs in salt marshes worldwide, and includes species with different invasive potential. We evaluated the effect of climate change in the distribution and invasion potential of five Spartina species (S. anglica, S. alterniflora, S. densiflora, S. patens, and S. maritima) at a global scale. Species distribution models (SDMs) were applied on species occurrence data and atmospheric environmental predictors (WorldClim 2.1) to project potential changes in habitat suitability and associated changes in distribution and species co-occurrence until the end of the century, across four Shared Socioeconomic Pathway scenarios (i.e., SSP1-2.6 to SSP5-8.5). Projections showed a global trend for increasing species co-occurrence, with a general range expansion potentiated by increasing pathway severity. This study suggests that Spartina species can potentially benefit from climate change, predicting poleward expansions in the Northern Hemisphere for most species, with results pointing at increased conflict and invasion potential in Northern Europe and East Asian shorelines, already under strong invasive pressure. S. anglica is projected to remain a successful invader, with more severe scenarios likely favoring greater expansions. S. alterniflora exhibits very low expansion comparatively, despite exhibiting the same northward distribution shift. SSP1-2.6 produced the smallest change to species co-occurrence, suggesting a smaller potential for invasion-related conflicts, although still registering a potential net expansion for the Genus. Despite their limitations, SDMs can help establish general trends in climate change ecology and inform policymakers and environmental agents to ensure the correct management of these habitats and, ultimately, ecosystems.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3