Towards Winter Seasonal Predictability of the North West European Shelf Seas

Author:

Tinker Jonathan,Hermanson Leon

Abstract

We investigate the winter predictability of the North West European shelf seas (NWS), using the Met Office seasonal forecasting system GloSea5 and the Copernicus NWS reanalysis. We assess GloSea5’s representation of NWS climatological winter and its skill at forecasting winter conditions on the NWS. We quantify NWS winter persistence and compare this to the forecast skill. GloSea5 simulates the winter climatology adequately. We find important errors in the residual circulation (particularly in the Irish Sea) that introduce temperature and salinity biases in the Irish Sea, English Channel, and southern North Sea. The GloSea5 winter skill is significant for SST across most of the NWS but is lower in the southern North Sea. Salinity skill is not significant in the regions affected by the circulation errors. There is considerable NWS winter temperature and salinity persistence. GloSea5 exhibits significant predictive skill above this over ∼20% of the NWS, but for most of the NWS this is not the case. Dynamical downscaling is one method to improve the GloSea5 simulation of the NWS and its circulation, which may reduce biases and increase predictive skill. We investigate this approach with a pair of case studies, comparing the winters of 2010/2011 and 2011/2012 (with contrasting temperature and salinity anomalies, and NAO state). While 2 years are insufficient to assess skill, the differences in the simulations are evaluated, and their implications for the NWS winter predictability are considered. The NWS circulation is improved (where it was poor in the GloSea5), allowing more realistic advective pathways for salinity (and temperature) and enhancing their climatological spatial distributions. However, as the GloSea5 SST anomaly is already well simulated, downscaling does not substantially improve this – in other seasons or for other variables, downscaling may add more value. We show that persistence of early winter values provides some predictive skill for the NWS winter SST, and that the GloSea5 system adds modestly to this skill in certain regions. Such information will allow prospective end-users to consider how seasonal forecasts might be useful for their sector, providing the foundation on which marine environmental seasonal forecasts service and community may be developed for the NWS.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3