New insights into the archives of redox conditions in seep carbonates from the northern South China Sea

Author:

Liang Qianyong,Huang Huiwen,Sun Yuedong,Gong Shanggui,Wang Xudong,Xiao Xi,Dong Yifei,Feng Junxi,Feng Dong

Abstract

Modern cold seeps are of fluctuant flux, which could result in variabilities of geochemical archives through intensively influencing the redox condition in pore fluids. However, the geochemical archives are not fully understood when the redox condition changes. Here, tubular carbonates from the Shenhu Sea Area were used to reconstruct the formation environment and redox conditions. The moderately negative δ13C values of the carbonates (−40.1‰ to −30.8‰, VPDB) indicate a mixed carbon source of thermogenic and biogenic methane. The low δ18O values (−2.7‰ to 1.0‰, VPDB) suggest a type of 18O-depleted pore fluid possibly influenced by gas hydrate formation. Co-variation of MoEF, WEF, CoEF, and CrEF suggests that high Fe contents in the rims of samples R1 and R2 are induced by Fe (oxyhydr)oxidation enrichment, while the positive correlation between MoEF and Mn/Al ratio indicates that high Mn contents in the rims of samples R3 and R4 are induced by Mn (oxyhydr)oxidation enrichment. The occurrence of Fe or Mn enrichment in the rims and the absence of Fe/Mn enrichment in the cores suggest Fe/Mn (oxyhydr)oxides forming in pore fluid rather than in bottom seawater. The carbonate phases of the rims enriched in Fe (oxyhydr)oxides are dominated by high magnesium calcite, while those of the rims enriched in Mn (oxyhydr)oxides are dominated by aragonite. The occurrence of Fe or Mn (oxyhydr)oxides corresponds to the previously proposed formation depth for the carbonate phase. The occurrence of dissolution textures in these rims indicates episodic oxic conditions, which would facilitate Fe2+/Mn2+ oxidation. We suppose that the Fe2+ and Mn2+ could be supplied through fluid seepage or diffusion from underlying sediments when the flux decreased. Similar archives may be applied to qualitatively reflect the changes of redox conditions in seep systems. Similar scenarios may help us understand the geochemical records in seeps of fluctuant flux.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3