Drivers of CO2-carbonate system variability in the coastal ocean south of Honolulu, Hawai’i

Author:

Knor Lucie A. C. M.,Meléndez Melissa,Sabine Christopher L.,Sutton Adrienne J.

Abstract

This study examines carbonate chemistry variability from 2008 to 2021 in subtropical coastal waters adjacent to Honolulu, Hawai’i. We use surface seawater carbon dioxide partial pressure (pCO2sw) measurements obtained every three hours from two buoys located along the south shore of O’ahu near anthropogenically impacted fringing reefs. The Ala Wai buoy was located 200 m offshore of a canal draining most of Honolulu, while the Kilo Nalu buoy was 1.3 miles (2 km) to the northwest, at a similar distance from shore with fewer terrestrial inputs. We compare pCO2sw variability from diurnal to interannual time scales. A trend analysis reveals a statistically significant increase in pCO2sw of +1.84 ± 0.27 µatm per year over the 11-year period. This rate is slightly lower than the average atmospheric growth rate observed during the same timeframe. In contrast to a nearby open-ocean site, the coastal sites experience amplified shorter-term variability, while seasonal to inter-annual variability is comparable to the open ocean. Ala Wai exhibits greater ranges than Kilo Nalu in all carbonate system variables due to its proximity to the Ala Wai Canal outflow. We examine the drivers that may explain both the similarities and contrasts in carbon dynamics observed between the two locations. Drivers of aragonite saturation state (ΩAr), an important variable for quantifying ocean acidification, are isolated from the in-situ time-series. Interannual salinity variations both due to freshwater pulses and large-scale regional salinity changes have a larger impact on ΩAr than temperature changes, which mostly have an effect seasonally. A large biological contribution to ΩAr is suspected, and further investigated using TA/DIC ratios normalized to median salinity and their slopes. Observed ratios at the south shore sites are evaluated relative to expected ratios derived from an open-ocean reference. Results suggest that dissolution and respiration are the primary biogeochemical processes occurring at these coastal sites. This highlights the significance of carbonate dissolution in anthropogenically impacted coastal waters, which is likely buffering acidification due to anthropogenic CO2 and freshwater inputs at these sites.

Funder

NOAA Pacific Marine Environmental Laboratory

Ocean Acidification Program

NOAA Sea Grant

Publisher

Frontiers Media SA

Reference50 articles.

1. The total economic value of U.S. coral reefs: A review of the literature;Brander,2013

2. Economic valuation of the coral reefs of hawai’i;Cesar;Pacific Sci.,2004

3. Taking the metabolic pulse of the world’s coral reefs;Cyronak;PloS One,2018

4. Composition of water and suspended sediment in streams of urbanized subtropical watersheds in Hawaii;De Carlo;Appl. Geochemistry,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3