Assessing the sources and dynamics of organic matter in a high human impact bay in the northern Beibu Gulf: Insights from stable isotopes and optical properties

Author:

Lu Xuan,Lao Qibin,Chen Fajin,Zhou Xin,Chen Chunqing,Zhu Qingmei

Abstract

Severe human activities in coastal areas have greatly impacted the sources and biogeochemical behaviors of organic matter (OM), including particulate OM (POM) and dissolved OM (DOM). However, few studies have incorporated the indices of POM and DOM to address this issue. Here, a dataset of the combination of stable isotopes of carbon and nitrogen in POM and the optical properties of DOM was presented in Xi Bay, a semi-enclosed bay with a highly developing industrial port in Beibu Gulf, South China, to reveal the origin, distribution, and fate of OM during the rainy season. In the upper bay, depleted δ13C suggested that particulate organic carbon (POC) mainly originated from terrestrial sources. However, the negative relationship between chromophoric DOM (CDOM) and particulate nitrogen (PN) suggested that bacterial-mediated decomposition of POM may be the primary source of CDOM. The negative correlation between humic-like fluorescent components (C1 and C2) and salinity suggested that those two components were mainly affected by terrestrial input. The significant correlation between the protein-like component (C3) and Chl a suggested that C3 was mainly derived from phytoplankton production in the upper bay. In the lower bay, the increase of δ13C values indicated an increased contribution of marine POC. The high levels of CDOM may be due to the decomposition of marine (fresh) POM. However, the low levels of C1 and C2 might be affected by dilution with seawater, and the increased levels of the protein-like C3 were due to enhanced primary production. In addition, the enhancement of δ15N values in both the upper and lower bays indicated serious nitrogen pollution in the bay. This study highlights that biological production fueled by excess nutrients is the dominant OM dynamic process in the bay with high human impact in Beibu Gulf.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3