ΔO2/N2′ as a New Tracer of Marine Net Community Production: Application and Evaluation in the Subarctic Northeast Pacific and Canadian Arctic Ocean

Author:

Izett Robert W.,Hamme Roberta C.,McNeil Craig,Manning Cara C. M.,Bourbonnais Annie,Tortell Philippe D.

Abstract

We compared field measurements of the biological O2 saturation anomalies, ΔO2/Ar and ΔO2/N2, from simultaneous oceanographic deployments of a membrane inlet mass spectrometer and optode/gas tension device (GTD). Data from the Subarctic Northeast Pacific and Canadian Arctic Ocean were used to evaluate ΔO2/N2 as an alternative to ΔO2/Ar for estimates of mixed layer net community production (NCP). We observed strong spatial coherence between ΔO2/Ar and ΔO2/N2, with small offsets resulting from differences in the solubility properties of Ar and N2 and their sensitivity to vertical mixing fluxes. Larger offsets between the two tracers were observed across hydrographic fronts and under elevated sea states, resulting from the differential time-response of the optode and GTD, and from bubble dissolution in the ship’s seawater lines. We used a simple numerical framework to correct for physical sources of divergence between N2 and Ar, deriving the tracer ΔO2/N2′. Over most of our survey regions, ΔO2/N2′ provided a better analog for ΔO2/Ar, and thus more accurate NCP estimates than ΔO2/N2. However, in coastal Arctic waters, ΔO2/N2 and ΔO2/N2′ performed equally well as NCP tracers. On average, mixed layer NCP estimated from ΔO2/Ar and ΔO2/N2′ agreed to within ∼2 mmol O2 m–2 d–1, with offsets typically smaller than other errors in NCP calculations. Our results demonstrate a significant potential to derive NCP from underway O2/N2 measurements across various oceanic regions. Optode/GTD systems could replace mass spectrometers for autonomous NCP derivation under many oceanographic conditions, thereby presenting opportunities to significantly expand global NCP coverage from various underway platforms.

Funder

Natural Sciences and Engineering Research Council of Canada

Marine Environmental Observation Prediction and Response Network

ArcticNet

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3