Uncertainties in wave-driven longshore sediment transport projections presented by a dynamic CMIP6-based ensemble

Author:

Zarifsanayei Amin Reza,Antolínez José A. A.,Cartwright Nick,Etemad-Shahidi Amir,Strauss Darrell,Lemos Gil,Semedo Alvaro,Kumar Rajesh,Dobrynin Mikhail,Akpinar Adem

Abstract

In this study four experiments were conducted to investigate uncertainty in future longshore sediment transport (LST) projections due to: working with continuous time series of CSIRO CMIP6-driven waves (experiment #1) or sliced time series of waves from CSIRO-CMIP6-Ws and CSIRO-CMIP5-Ws (experiment #2); different wave-model-parametrization pairs to generate wave projections (experiment #3); and the inclusion/exclusion of sea level rise (SLR) for wave transformation (experiment #4). For each experiment, a weighted ensemble consisting of offshore wave forcing conditions, a surrogate model for nearshore wave transformation and eight LST models was used. The results of experiment # 1 indicated that the annual LST rates obtained from a continuous time series of waves were influenced by climate variability acting on timescales of 20-30 years. Uncertainty decomposition clearly reveals that for near-future coastal planning, a large part of the uncertainty arises from model selection and natural variability of the system (e.g., on average, 4% scenario, 57% model, and 39% internal variability). For the far future, the total uncertainty consists of 25% scenario, 54% model and 21% internal variability. Experiment #2 indicates that CMIP6 driven wave climatology yield similar outcomes to CMIP5 driven wave climatology in that LST rates decrease along the study area’s coast by less than 10%. The results of experiment #3 indicate that intra- and inter-annual variability of LST rates are influenced by the parameterization schemes of the wave simulations. This can increase the range of uncertainty in the LST projections and at the same time can limit the robustness of the projections. The inclusion of SLR (experiment #4) in wave transformation, under SSP1-2.6 and SSP5-8.5 scenarios, yields only meagre changes in the LST projections, compared to the case no SLR. However, it is noted that future research on SLR influence should include potential changes in nearshore profile shapes.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3