An Individual-Based Model to Quantify the Effect of Salinity on the Production of Apocyclops royi (Cyclopoida, Copepoda)

Author:

Yoshino Mizuki,Pan Yen-Ju,Souissi Sami,Dur Gaël

Abstract

In this study, an individual-based model (IBM) was established and applied to simulate the effects of salinity variations on the productivity of a promising live feed cyclopoid copepod Apocyclops royi for aquaculture applications. The model integrates the effect of salinity on the different reproductive traits and temperature on female longevity. To calibrate the model developed on the Mobidyc platform, we collected data from previous literature and conducted complementary experiments. The model outputs on total nauplii production match the experimental results. Both showed a progressive increase in nauplii production from 0 up to 21 PSU, beyond which the production decreases. There were no significant differences between the estimated nauplii production and the observed ones for most salinity conditions. We then used the model to estimate the egg and nauplii production of a population initiated with 1,000 females along a salinity gradient from 0 to 39 PSU during 20-d cultivation. Around the optimal salinity of 21 PSU, the egg and nauplii production peaked at 1.8x105 eggs and 1.39x105 nauplii, respectively. A deviation of 7 PSU from the optimal salinity range would lead to a loss of 22 to 25% in egg and nauplii production. The results indicate that implementing the IBM into a life-cycle model provides useful tool for managing the risks of salinity variation on the copepod productivity in aquaculture conditions.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3