Cost-Benefit Analysis of a Hybrid Biophysical Approach to Wave Energy Extraction: Bio-Oscillator

Author:

Hildebrand Tabea,Fischer Christian,Relano Veronica,Gorman Richard,Stevens Craig

Abstract

A cost-benefit analysis (CBA) is described for a novel wave energy converters (WEC) design based on a marine hybrid bio-structure—a combination of macroalgae, shellfish or other species on a built frame. The Bio-Oscillator design utilises a hard “skeleton” (e.g., carbon fibre, wood) on which biological organisms (e.g., shellfish, large macroalgae) are grown. As waves pass by, the load generated by the oscillating drag and inertia is transferred through mooring lines to power takeoff technology. This novel approach essentially reverses the typical marine engineering view that “bio-fouling is bad” and instead leverages off the added-drag of biological growth on structures. The approach results in a structure that is largely biodegradable, naturally self-replicating and synergistic with the background environment, self-de-risking in terms of failure impact and can leverage off its own form to enhance energy capture beyond a conventional design. This reduces impact while connecting with conventional marine industries such as aquaculture. A CBA examines the economic pros and cons of this approach, focusing on installation and material costs, along with benefits from synergistic production. The analysis suggests that in addition to typical wave energy obstacles (e.g., cable length, capture width, and power take off) the benefits (biodegradability, harvestability, and carbon reduction) of replacing much of the mass of the structure with living biological material can be included.

Funder

National Institute of Water and Atmospheric Research

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3