Decline in cold-water coral growth promotes molluscan diversity: A paleontological perspective from a cold-water coral mound in the western Mediterranean Sea

Author:

Korpanty Chelsea A.,Hoffman Leon,Portilho-Ramos Rodrigo da Costa,Titschack Jürgen,Wienberg Claudia,Hebbeln Dierk

Abstract

Framework-forming scleractinian cold-water corals (CWCs) act as ecosystem engineers, building and supporting biodiversity hotspots in the deep sea worldwide. While spatial patterns and drivers of species distributions have been evaluated on modern CWC reefs, little is known about how reef diversity is affected by habitat variability over geologic time – the scale at which CWC reefs initiate, thrive, and decline. Using three CWC reef sediment cores as species diversity archives, we investigated temporal trends of molluscan diversity over the last ~13 kyr from a CWC mound in the Alboran Sea (western Mediterranean Sea) to evaluate (a) how spatial patterns of CWC-associated diversity are recorded in reef sediments, (b) the potential of CWC reefs as biodiversity hotspots when coral growth is flourishing and when it is not, and (c) which palaeoceanographic conditions or habitat characteristics may be driving biodiversity. Our results reveal that at the ecosystem scale ecological differences between CWC habitats are more pronounced than ecological signatures of molluscan assemblages associated with intervals of CWC framework (flourishing growth) or non-framework (negligible CWC growth). However, within habitats, significant differences emerge between these assemblages with lower molluscan diversity associated with flourishing CWC growth. Significant negative correlations between molluscan diversity and palaeoceanographic conditions conducive for CWC growth (high food availability, strong hydrodynamics, optimal bottom-water temperatures and salinities, and high aggradation rates indicative of flourishing CWC growth also imply that CWC growth and relevant environmental conditions contribute to reduced molluscan diversity. Additionally, high coral volume, used here as a proxy for habitat structural complexity, is positively correlated with molluscan diversity just as high habitat complexity is in living CWC reefs. Altogether, these patterns detected over geologic time resemble those observed spatially across living CWC reefs today – where competition with resources, particularly food, prevents high reef biodiversity in the immediate vicinity of dense living CWC colonies. Overall, our study demonstrates that (1) ecological paradigms of living CWCs are preserved in their sedimentary record, (2) flourishing CWC growth and conditions promoting CWC growth drive habitat-scale diversity patterns, and (3) a geological approach can be applied to study long-term diversity dynamics in CWC ecosystems.

Funder

MARUM – Zentrum für Marine Umweltwissenschaften

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3