eDNA metabarcoding vs metagenomics: an assessment of dietary competition in two estuarine pipefishes

Author:

Serite Conny P.,Emami-Khoyi Arsalan,Ntshudisane Ofentse K.,James Nicola C.,Jansen van Vuuren Bettine,Bodill Taryn,Cowley Paul D.,Whitfield Alan K.,Teske Peter R.

Abstract

Understanding the dietary preferences of endangered species can be useful in implementing conservation strategies, including habitat restoration, translocation, and captive breeding. Environmental DNA (eDNA) from feces provides a non-invasive method for analysing animal diets. Currently, metabarcoding, a PCR-based approach, is the method of choice for analysing such data. However, this method has limitations, specifically PCR bias, which can result in the overestimation of the importance of certain taxa and failure to detect other taxa because they do not amplify. The present study compared metabarcoding with metagenomics, a PCR-free method, to assess the diversity of prey items in the feces of a critically endangered South African estuarine pipefish, Syngnathus watermeyeri, and its widely distributed congener S. temminckii to investigate potential dietary competition. The metabarcoding results showed a distinct difference between the diets of S. watermeyeri and S. temminckii, with the former mainly consuming calanoid copepods and the latter preferring caridean shrimp. In each case, a single species dominated the sequences generated by metabarcoding. Metagenomics produced more species identifications, and although the same trend was found regarding the preference of S. watermeyeri for copepods and that of S. temminckii for shrimp, this approach identified additional, albeit yet unidentified, copepod species as being important in the diet of S. watermeyeri. We conclude that the lower number of species identified using metabarcoding was most likely a result of amplification bias, resulting in key copepod species missing from the dietary analysis. These findings suggest that metagenomics is not only a useful complementary method for molecular dietary analysis, but may in some cases outperform metabarcoding. However, metagenomics is even more strongly affected by the lack of reference sequences than is metabarcoding, as the majority of sequences originate from genomic regions that have not yet been sequenced for the putative prey species in question.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference62 articles.

1. Distribution and status of Zostera capensis in South African estuaries — a review;Adams;S. Afr. J. Bot.,2016

2. Scrutinizing key steps for reliable metabarcoding of environmental samples;Alberdi;Methods Ecol. Evol.,2018

3. A newly discovered population of the critically endangered false limpet Siphonaria compressa Allanson, 1958 (Pulmonata: Siphonariidae), with observations on its reproductive biology;Allanson;S. Afr. J. Sci.,2005

4. Basic local alignment search tool;Altschul;J. Mol. Biol.,1990

5. Reproduction and infant pelage colouration of the banded leaf monkey (Mammalia: Primates: Cercopithecidae) in Singapore;Ang;Raffles Bull. Zool.,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3