An iterative labeling method for annotating marine life imagery

Author:

Zhang Zhiyong,Kaveti Pushyami,Singh Hanumant,Powell Abigail,Fruh Erica,Clarke M. Elizabeth

Abstract

This paper presents a labeling methodology for marine life data using a weakly supervised learning framework. The methodology iteratively trains a deep learning model using non-expert labels obtained from crowdsourcing. This approach enables us to converge on a labeled image dataset through multiple training and production loops that leverage crowdsourcing interfaces. We present our algorithm and its results on two separate sets of image data collected using the Seabed autonomous underwater vehicle. The first dataset consists of 10,505 images that were point annotated by NOAA biologists. This dataset allows us to validate the accuracy of our labeling process. We also apply our algorithm and methodology to a second dataset consisting of 3,968 completely unlabeled images. These image categories are challenging to label, such as sponges. Qualitatively, our results indicate that training with a tiny subset and iterating on those results allows us to converge to a large, highly annotated dataset with a small number of iterations. To demonstrate the effectiveness of our methodology quantitatively, we tabulate the mean average precision (mAP) of the model as the number of iterations increases.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference54 articles.

1. The modular optical underwater survey system (MOUSS) for in situ sampling of fish assemblages;Amin;Sensors (Basel Switzerland),2017

2. Local inter-session variability modelling for object classification;Anantharajah,2014

3. Process design to use amazon mturk for cognitively complex tasks;Bhattacharjee;IT Prof.,2021

4. A research tool for long-term and continuous analysis of fish assemblage in coral-reefs using underwater camera footage;Boom;Ecol. Inf.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3