Developing machine learning methods for automatic recognition of fishing vessel behaviour in the Scomber japonicus fisheries

Author:

Wang Shuxian,Zhang Shengmao,Tang Fenghua,Shi Yongchuang,Sui Yanming,Fan Xiumei,Chen Junlin

Abstract

IntroductionWith a higher degree of automation, fishing vessels have gradually begun adopting a fishing monitoring method that combines human and electronic observers. However, the objective data of electronic monitoring systems (EMS) has not yet been fully applied in various fishing boat scenarios such as ship behavior recognition.MethodsIn order to make full use of EMS data and improve the accuracy of behaviors recognition of fishing vessels, the present study proposes applying popular deep learning technologies such as convolutional neural network, long short-term memory, and attention mechanism to Chub mackerel (Scomber japonicus) fishing vessel behaviors recognition. The operation process of Chub mackerel fishing vessels was divided into nine kinds of behaviors, such as “pulling nets”, “putting nets”, “fish pick”, “reprint”, etc. According to the characteristics of their fishing work, four networks with different convolutional layers were designed in the pre-experiment. And the feasibility of each network in behavior recognition of the fishing vessels was observed. The pre-experiment is optimized from the perspective of the data set and the network. From the standpoint of the data set, the size of the optimized data set is significantly reduced, and the original data characteristics are preserved as much as possible. From the perspective of the network, different combinations of pooling, long short-term memory(LSTM) network, and attention(including CBAM and SE) are added to the network, and their effects on training time and recognition effect are compared.ResultsThe experimental results reveal that the deep learning methods have outstanding performance in behaviors recognition of fishing vessels. The LSTM and SE module combination produced the most apparent optimization effect on the network, and the optimized model can achieve an F1 score of 97.12% in the test set, surpassing the classic ResNet, VGGNet, and AlexNet.DiscussionThis research is of great significance to the management of intelligent fishery vessels and can promote the development of electronic monitoring systems for ships.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference28 articles.

1. Maritime traffic networks: From historical positioning data to unsupervised maritime traffic monitoring;Arguedas;IEEE Trans. Intell. Transport. Syst.,2017

2. Ship recognition method combined with image segmentation and deep learning feature extraction in video surveillance';Cao;Multimed. Tools Appl.,2020

3. Video-based detection infrastructure enhancement for automated ship recognition and behavior analysis;Chen;J. Adv. Transport.,2020

4. Pilot evaluation of the efficacy of electronic monitoring on a demersal gillnet vessel as an alternative to human observers;Evans,2021

5. The study of identification of fishing vessel behavior based on VMS data;Feng;Proc. 3rd Int. Conf. Telecomm. Commun. Eng.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3