Author:
Steward D’amy N.,Paxton Avery B.,Bacheler Nathan M.,Schobernd Christina M.,Mille Keith,Renchen Jeffrey,Harrison Zach,Byrum Jordan,Martore Robert,Brinton Cameron,Riley Kenneth L.,Taylor J. Christopher,Kellison G. Todd
Abstract
With increasing human uses of the ocean, existing seascapes containing natural habitats, such as biogenic reefs or plant-dominated systems, are supplemented by novel, human-made habitats ranging from artificial reefs to energy extraction infrastructure and shoreline installments. Despite the mixture of natural and artificial habitats across seascapes, the distribution and extent of these two types of structured habitats are not well understood but are necessary pieces of information for ocean planning and resource management decisions. Through a case study, we quantified the amount of seafloor in the southeastern US (SEUS; 103,220 km2 in the Atlantic Ocean; 10 – 200 m depth) covered by artificial reefs and natural reefs. We developed multiple data-driven approaches to quantify the extent of artificial reefs within state-managed artificial reef programs, and then drew from seafloor maps and published geological and predictive seafloor habitat models to develop three estimates of natural reef extent. Comparisons of the extent of natural and artificial reefs revealed that artificial reefs account for substantially less habitat (average of two estimates 3 km2; <0.01% of SEUS) in the region than natural reefs (average of three estimates 2,654 km2; 2.57% of SEUS) and that this pattern holds across finer regional groupings (e.g., states, depth bins). Our overall estimates suggest that artificial reef coverage is several orders of magnitude less than natural reef coverage. While expansive seafloor mapping and characterization efforts are still needed in SEUS waters, our results fill information gaps regarding the extent of artificial and natural reef habitats in the region, providing support for ecosystem-based management, and demonstrating an approach applicable to other regions.
Subject
Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献