A natural vertical distribution calculation scheme for salinity simulation in free-surface model with quasi-stationary coordinates

Author:

Li Yundong,Han Guijun,Li Wei,Wu Xiaobo,Cao Lige,Zhou Gongfu

Abstract

IntroductionSalinity is a key variable in the dynamic and thermal balance of the entire climate system. To address the complexities of diverse terrains and fluctuating ocean waves, we commonly use free-surface models with quasi-stationary (e.g. height, pressure, or terrain following) coordinates for simulating salinity. In such models, the vertical grid dynamically adjusts with the undulation of seawater. However, this adjustment also occurs when freshwater enters or exits the ocean. Freshwater-induced salinity changes at the ocean’s surface are artificially distributed to each vertical layer within a model time step. This means that the freshwater at the ocean surface instantaneously and directly affects the seafloor. This process is different from physical diffusion processes. The diffusion effects caused by the influx and outflow of freshwater have a very small impact on the seafloor. This error leads to salinity non-conservation and disrupts the vertical distribution structure of salinity. Previous studies have also addressed this issue with solutions such as the vertical Lagrangian-remap method.MethodThis paper proposes a natural vertical distribution calculation scheme (NVDCS) which is different from the approaches of our predecessors. In the discrete formulation of the original ocean equations, freshwater flux is introduced to ensure salinity conservation. In each model time step, by calculating the seawater volume changes due to freshwater inflow or outflow, as well as the vertical grid changes caused by sea surface undulations, the aforementioned artificial error is eliminated from each vertical layer.DiscussionThis scheme ensures that changes in the vertical coordinates of each layer result solely from internal oceanic dynamic processes, avoiding the instantaneous and directly impact of surface freshwater. Ultimately, the influence of freshwater is confined to the ocean surface.ResultsThis method is straightforward to implement and user-friendly. Sensitivity experiments indicate that in free-surface models, quasi-stationary coordinates introduce artificial errors. The proposed calculation scheme not only eliminates this error but also achieves a better vertical distribution structure than using virtual salt flux, while ensuring salinity conservation.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3