Biological carbon pump responses to multiscale physical processes: a review of sediment trap studies in the South China Sea

Author:

Zhang Jingjing,Li Hongliang,Wiesner Martin G.,Ran Lihua,He Xingju,Chi Guangxi,Wang Xinyang,Yu Jinping,Chen Jianfang

Abstract

Accurately assessing the capacity of the modern ocean to photosynthetically fix and sequester atmospheric CO2, termed the biological carbon pump (BCP), is a key component in studies on the marine carbon cycle and the global climate system. Particulate organic carbon (POC) flux into the ocean interior is an important indicator of the BCP strength, and it can be directly measured by sediment traps on time scales from days to years. This study has been conducted in the South China Sea (SCS) for over three decades. The SCS is one of the largest tropical marginal seas, located in the Asian monsoon region with frequent occurrence of dynamic physical processes and anthropogenic perturbations. It hosts an ideal natural laboratory to investigate the response of the BCP to multiscale physical processes. In this mini review, we briefly introduce the study history of mooring sediment traps in the SCS, synthesize the processes that regulate the temporal variability in mesopelagic POC flux, and how it is sensitive to climate changes. The time-series characteristics of the POC flux are clearly linked to primary production, as well as the key physical processes in the upper layer. The seasonal East Asian monsoon, intraseasonal eddies, aerosol deposition and interannual El Niño Southern Oscillation (ENSO) events are the main controlling factors over weekly to yearly timescales. Together, they suggest that the multiscale physical forcing in the upper layer regulates the mesopelagic POC export flux by controlling nutrient supplementation and subsequent POC production.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3