Plasticity of the Anemonia viridis microbiota in response to different levels of combined anthropogenic and environmental stresses

Author:

Palladino Giorgia,Rampelli Simone,Galià-Camps Carles,Scicchitano Daniel,Trapella Giulia,Nanetti Enrico,Angelini Valeria,Cleo Daniela,Turroni Silvia,Corinaldesi Cinzia,Candela Marco

Abstract

Despite their recognized primary importance, marine coastal ecosystems around the globe are currently under threat, being subject to continuous local and global anthropogenic stressors. In this frame, understanding the response of coastal habitat-forming species to multiple stressors and their resilience is fundamental for the sustainable management of coastal ecosystems. In the present study, to provide some glimpses in this direction, we explored the response of theAnemonia viridis-associated microbiota to the combined anthropogenic stressors, which typically affect touristic hotspots at Mediterranean coastal sites. To this aim, two case studies have been carried out, the first in the Riccione coastal site (Italy, Center Mediterranean) and the second at Cap de Creus (Spain, North-western Mediterranean), where theA. viridismicrobiota was assessed under the conditions of both high and low anthropogenic pressure. According to our findings, theA. viridismicrobiota showed a relevant degree of plasticity in response to combined anthropogenic and environmental stressors, with changes that also mirrored variations in the surrounding seawater, thus indicating a close connection with the environment, from which potential symbiotic partners are selected. However, this potentially adaptive process also has a limitation, as observed in the highly anthropogenic impact site of Cap de Creus, whereA. viridis-associated microbiota appeared completely unstructured, as demonstrated by an increased dispersion according to the Anna Karenina principle. This raises the question about the resilience of theA. viridis-associated microbiota under combined climate and anthropogenic threats, as well as of the anthropogenic factors driving the observed dysbiosis changes.

Funder

Horizon 2020

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3