Assessment of water levels from 43 years of NOAA’s Coastal Ocean Reanalysis (CORA) for the Gulf of Mexico and East Coasts

Author:

Rose Linta,Widlansky Matthew J.,Feng Xue,Thompson Philip,Asher Taylor G.,Dusek Gregory,Blanton Brian,Luettich Richard A.,Callahan John,Brooks William,Keeney Analise,Haddad Jana,Sweet William,Genz Ayesha,Hovenga Paige,Marra John,Tilson Jeffrey

Abstract

Coastal water level information is crucial for understanding flood occurrences and changing risks. Here, we validate the preliminary version (0.9) of NOAA’s Coastal Ocean Reanalysis (CORA), which is a 43-year reanalysis (1979–2021) of hourly coastal water levels for the Gulf of Mexico and Atlantic Ocean (i.e., the Gulf and East Coast region, or GEC). CORA-GEC v0.9 was conducted by the Renaissance Computing Institute using the coupled ADCIRC+SWAN coastal circulation and wave model. The model uses an unstructured mesh of nodes with varying spatial resolution that averages 400 m near the coast and is much coarser in the open ocean. Water level variations associated with tides and meteorological forcing are explicitly modeled, while lower-frequency water level variations are included by dynamically assimilating observations from NOAA’s National Water Level Observation Network. We compare CORA to water level observations that were either assimilated or not, and find that the reanalysis generally performs better than a state-of-the-art global ocean reanalysis (GLORYS12) in capturing the variability on monthly, seasonal, and interannual timescales as well as the long-term trend. The variability of hourly non-tidal residuals is also shown to be well resolved in CORA when compared to water level observations. Lastly, we present a case study of extreme water levels and coastal inundations around Miami, Florida to demonstrate an application of CORA for studying flood risks. Our assessment suggests that NOAA’s CORA-GEC v0.9 provides valuable information on water levels and flooding occurrence from 1979–2021 in areas that are experiencing changes across multiple time scales. CORA potentially can enhance flood risk assessment along parts of the U.S. Coast that do not have historical water level observations.

Publisher

Frontiers Media SA

Reference39 articles.

1. Bottom marine heatwaves along the continental shelves of North America;Amaya;Nat. Commun.,2023

2. Temporal variability of runup and total water level on Cape Cod sandy beaches;Aretxabaleta,2023

3. Low frequency water level correction in storm surge models using data assimilation;Asher;Ocean Model.,2019

4. The role of meteorological forcing on the St. Johns River (Northeastern Florida);Bacopoulos;J. Hydrol (Amst),2009

5. Real-time simulated storm surge predictions during hurricane Michael, (2018);Bilskie;Weather Forecast,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3