Identification of food sources in tropical seagrass bed food web using triple stable isotopes and fatty acid signatures

Author:

Cui Lijun,Jiang Zhijian,Huang Xiaoping,Liu Songlin,Wu Yunchao

Abstract

Identifying the trophic role of primary producers is the basis of assessing seagrass bed functions but remains difficult due to the underdetermined analysis method. Here, we analyzed the multiple isotopes (δ13C, δ15N, and δ34S values) and fatty acid markers of food sources and macrobenthos in a tropical seagrass bed in summer and winter, and tried to combine these indicators to resolve the limitation of δ13C and δ15N values analysis. We found that the δ13C and δ15N values of epiphytes were like that of seagrass and macroalgae, while the δ34S values of epiphytes and macroalgae were significantly different, and the dominant unsaturated Fatty acid markers of seagrass (18:2n6c and 18:3n3) and epiphytes (16:1n7) were obviously different. These results suggest that the combination of multiple isotopes and Fatty acid markers can effectively distinguish the complex food source. In addition, we also found that multiple isotopes were more suitable to identify the food sources of polychaetes and snails with simple diets, fatty acids were more suitable to identify the food sources of crustaceans with complex diets, but their combination is essential in identifying the diets of macrobenthos since the wide range of isotopic values for omnivores crustaceans and the Fatty acid markers transformation during snails and polychaetes assimilation might mislead us when only isotopes or Fatty acid markers were used. Our findings suggest that in tropical seagrass beds, using multiple isotopes and fatty acid markers together can help reduce the uncertainty caused by single markers variation and thus strengthen the separation of food sources and the diets of different consumer species.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3