Species-specific metabolome changes during salinity downshift in sub-Arctic populations of Mytilus edulis and M. trossulus

Author:

Sokolova Inna M.,Kovalev Anton,Timm Stefan,Marchenko Julia,Sukhotin Alexey

Abstract

The blue mussels Mytilus edulis and Mytilus trossulus are ecologically and economically important species distributed widely across the Northern Hemisphere. Understanding their behavioral and physiological disparities is crucial for assessing their ecological success and aquacultural value. The recent finding of non-native M. trossulus in the White Sea raises concerns regarding its potential competition with native M. edulis and its prospective spread in light of climate change and surface water freshening. We investigated the responses of M. edulis and M. trossulus to salinity variations by examining shell closure thresholds and tissue levels of 35 metabolic intermediates in mussels acclimated to different salinities (25, 16, and 10). The salinity threshold for valve closure was similar in both studied species, but M. trossulus consistently opened at lower salinities (by 0.2–0.7 practical salinity units) compared to M. edulis. Salinity-induced changes in metabolite levels were similar between the two species. Taurine emerged as the dominant osmolyte, comprising over 50% of the total free amino acid pool, with aspartate and glycine contributing 15–30%. Concentrations of taurine, glycine, and total free amino acids declined with decreasing salinity. Taurine to glycine ratios were higher in M. edulis and increased in both species with declining salinity. Acclimation salinity significantly influenced urea cycle intermediates and methionine sulfoxide content, a cellular biomarker of amino acid oxidation. Species-specific differences were observed in purine metabolism, with higher levels of GMP and AMP found in M. edulis. Likewise, aromatic amino acids and histidine levels were higher in M. edulis compared to M. trossulus. However, no evidence suggests superior adaptation of M. trossulus metabolism to hypoosmotic stress compared to M. edulis. Further research is necessary to elucidate the functional implications of subtle metabolic differences between these Mytilus congeners and their ecological consequences in changing marine environments.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3