Complexity of the marine ecosystem in view of the human health factors: role of network science

Author:

Capobianco Enrico,Moretti Pier Francesco

Abstract

Anthropogenic and natural factors impacting health and well-being in coastal waters, regional seas, and the global ocean have long been recognized by the marine scientists, however not as much by the medical and public health community. Although establishing causal effects that directly or indirectly affect human health-related conditions is problematic and depends on the complex marine ecosystem, significant influences are present at both local and global levels, i.e., specific to coastal areas but also associated with sea activities referred to the ‘ocean health’ status. This offers a good rationale for an assessment of the human-marine environment interaction, evolution and complexity landscape. The health ecosystem as a whole (humans and environment, especially marine in our interests) is a complex bio-entity whose dynamics are largely unknown due to the presence of biodiversity and heterogeneity. In parallel, this complexity translates into various new processes that the stakeholders face to establish possible interventions and preserve the sustainability. A major checkpoint in our discussion refers to how to leverage the consolidated and indeed pervasive role of digital information across multiple fields and disciplines, supported by developments in artificial intelligence, machine learning and network science. This is an urgency, as the scientific marine community and the public health policy makers are struggling to gather big data from multiple sources and/or devices that help reveal the marine environmental status. Improvements in the ability of analyzing efficiently and effectively data are needed, and we suggest to profitably look at knowledge transfer strategies. In particular, considering and valuing how the scientific biomedical community has made use of network inference approaches to better understand complex biosystems in both structural and functional terms, we believe that the existing knowledge base can be further generalized to deal with the marine environmental ecosystem context.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference68 articles.

1. Tree-grass co-existence in savanna: interactions of rain and fire;Accatino;J. Theor. Biol.,2010

2. Sounding the sound in the ocean: back-casting foresight to identify observing strategies to understand the ecosystem;Affatati,2021

3. Petri netckis for modelling and analysing trophic networks;Baldan;Fundamenta. Informat.,2018

4. Keystone taxa as drivers of microbiome structure and functioning;Banerjee;Nat. Rev. Microbiol.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3