Abstract
In order to understand how global warming effects on ecosystem primary production may change depending on nutrient enrichment, a new classification is proposed to disentangle and recognize the combination of interactions among several factors, based on the effect direction (positive, negative, or neutral) and its changes induced in it by the other factor (synergizing, antagonizing, inducing no change, or changing it in some other way). Marine macroalgae were chosen (as primary producers for which there is the most experimental information available) to review the relevant studies on which this new classification can be tested. It was observed the positive effects of elevated temperature and nutrient enrichment often synergized each other within the temperature range between relatively low and optimal growth levels. However, the negative effect of further temperature elevation from optimal to higher levels was antagonized by nutrient enrichment in some studies but was synergized in others, depending on the range of temperature elevation. The positive effect of nutrient enrichment was antagonized (but still positive) by temperature increase above the optimum in many cases, although the effect sometimes switched to a negative effect depending on the magnitude of nutrient enrichment. These results predict that global warming will enhance bottom-up effects on primary production in cold seasons and areas, and there will be a negative warming effect on production in hot seasons and areas, but it may be possible to mitigate this effect by appropriate levels of nutrient enrichment.
Subject
Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献