Spiciness anomalies in the upper North Pacific based on Argo observations

Author:

Wang Tong,Suga Toshio,Kouketsu Shinya

Abstract

The density-compensated salinity anomalies (spiciness anomalies) in the upper North Pacific were investigated using Argo float profiles during 2004–2018. The freshening of the subtropical thermocline was found within the Central Mode Water (CMW) and the North Pacific Intermediate Water (salinity minimum). Meanwhile, the increase of salinity was found in the lighter layer within the North Pacific Tropical Water (salinity maximum). The interannual and longer spiciness anomalies were interpreted with three-dimensional evolutions and were linked to the fate of three mode waters (i.e., Subtropical Mode Water (STMW), Eastern Subtropical Mode Water (ESTMW), and CMW) for the first time. In the STMW, the salinity was dominated by a quasi-decadal variability, which was consistent with the KE variability with a 1-year lag, and did not show rapid freshening. In the CMW, the salinity decreased with a quasi-decadal variability, which was weaker and out of the phase compared with the STMW. In the ESTMW, the salinity was dominated by year-to-year variability. The spiciness anomalies originated mainly in the outcrop region of the isopycnals, where they were accompanied by the formation and the subduction of the mode waters. They also propagated and decayed downstream the geostrophic currents. However, a few of the interannual anomalies found in the northern part of the CMW were almost dampened before their spread further south. In addition, some anomalies in the ESTMW appeared and intensified without a connection to the mixed layer. These anomalies occurred far from the outcrop line, suggesting these were caused likely by salt fingering associated with the modification of the mode waters. Furthermore, the propagation of the spiciness anomalies in the western to the central subtropics was significantly faster than the geostrophic current and inclined to the inner side of streamlines. These indicated the transport by eddies in addition to the mean geostrophic currents.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Corporation

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3