Insights into saline adaptation strategies through a novel halophilic bacterium isolated from solar saltern of Yellow sea

Author:

Yoo Yeonjae,Lee Hanbyul,Lee Junghyun,Khim Jong Seong,Kim Jae-Jin

Abstract

Solar salterns were placed along the coast and were frequently left unattended after use. While many studies have isolated and identified microorganisms from hypersaline environments, their role and adaptation mechanisms are still unclear. Herein, we elucidated the role of halophiles in salt-polluted areas through the recently reported Halomonas getboli YJPS3-2 from the abandoned saltern. We analyzed the expression levels of genes in the YJPS3-2 strain to identify its adaptation mechanisms to high salinity environments, by representing the process from tidal flats to abandoned salterns with varying salinity gradients. The YJPS3-2 strain primarily overexpresses genes associated with ABC transport to adapt to hypersaline environments. Interestingly, the cheA gene, which recognizes changes in the surrounding, was the most upregulated, and it was also associated with the overexpression of the MS ring and T3SS mechanisms relating to the flagellar activity. The YJPS3-2 recognized the high salt concentration in its surroundings and attempted to accumulate compatible solutes that could withstand high osmotic pressure inside the cell to adapt to the high salinity environment. Furthermore, during this process, the YJPS3-2 strain removed surrounding pollutants and secreted secondary metabolites that could be utilized by neighboring organisms. Our results suggested that this halophilic bacterium has the potential to serve as a pioneering species for thriving the surrounding while adapting to saline environments.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3