Species Delimitation of Hexacorallia and Octocorallia Around Iceland Using Nuclear and Mitochondrial DNA and Proteome Fingerprinting

Author:

Korfhage Severin A.,Rossel Sven,Brix Saskia,McFadden Catherine S.,Ólafsdóttir Steinunn Hilma,Martínez Arbizu Pedro

Abstract

Cold-water corals build up reef structures or coral gardens and play an important role for many organisms in the deep sea. Climate change, deep-sea mining, and bottom trawling are severely compromising these ecosystems, making it all the more important to document the diversity, distribution, and impacts on corals. This goes hand in hand with species identification, which is morphologically and genetically challenging for Hexa- and Octocorallia. Morphological variation and slowly evolving molecular markers both contribute to the difficulty of species identification. In this study, a fast and cheap species delimitation tool for Octocorallia and Scleractinia, an order of the Hexacorallia, of the Northeast Atlantic was tested based on 49 specimens. Two nuclear markers (ITS2 and 28S rDNA) and two mitochondrial markers (COI and mtMutS) were sequenced. The sequences formed the basis of a reference library for comparison to the results of species delimitation based on proteomic fingerprinting using MALDI-TOF MS. The genetic methods were able to distinguish 17 of 18 presumed species. Due to a lack of replicates, using proteome fingerprinting only 7 species were distinguishable. Species that could not be distinguished from one another still achieved good signals of spectra but were not represented by enough specimens for comparison. Therefore, it is predicted that with an extensive reference library of proteome spectra for Scleractinia and Octocorallia, MALDI-TOF MS may provide a rapid and cost-effective alternative for species discrimination in corals.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3