Anomaly detection in feature space for detecting changes in phytoplankton populations

Author:

Ciranni Massimiliano,Odone Francesca,Pastore Vito Paolo

Abstract

Plankton organisms are fundamental components of the earth’s ecosystem. Zooplankton feeds on phytoplankton and is predated by fish and other aquatic animals, being at the core of the aquatic food chain. On the other hand, Phytoplankton has a crucial role in climate regulation, has produced almost 50% of the total oxygen in the atmosphere and it’s responsible for fixing around a quarter of the total earth’s carbon dioxide. Importantly, plankton can be regarded as a good indicator of environmental perturbations, as it can react to even slight environmental changes with corresponding modifications in morphology and behavior. At a population level, the biodiversity and the concentration of individuals of specific species may shift dramatically due to environmental changes. Thus, in this paper, we propose an anomaly detection-based framework to recognize heavy morphological changes in phytoplankton at a population level, starting from images acquired in situ. Given that an initial annotated dataset is available, we propose to build a parallel architecture training one anomaly detection algorithm for each available class on top of deep features extracted by a pre-trained Vision Transformer, further reduced in dimensionality with PCA. We later define global anomalies, corresponding to samples rejected by all the trained detectors, proposing to empirically identify a threshold based on global anomaly count over time as an indicator that can be used by field experts and institutions to investigate potential environmental perturbations. We use two publicly available datasets (WHOI22 and WHOI40) of grayscale microscopic images of phytoplankton collected with the Imaging FlowCytobot acquisition system to test the proposed approach, obtaining high performances in detecting both in-class and out-of-class samples. Finally, we build a dataset of 15 classes acquired by the WHOI across four years, showing that the proposed approach’s ability to identify anomalies is preserved when tested on images of the same classes acquired across a timespan of years.

Publisher

Frontiers Media SA

Reference56 articles.

1. Efficient unsupervised learning for plankton images;Alfano,2022

2. Dynamic programming;Bellman;Science,1966

3. Rapid: research on automated plankton identification;Benfield;Oceanography,2007

4. Lof: Identifying density-based local outliers;Breunig;SIGMOD Rec.,2000

5. Plankton;Brierley;Curr. Biol.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3