Analysis of the global shipping traffic for the feasibility of a structural recovery program of Argo floats

Author:

González-Santana Alberto,Oosterbaan Marijn,Clavelle Tyler,Maze Guillaume,Notarstefano Giulio,Poffa Noe,Vélez-Belchí Pedro

Abstract

The Argo observation network is made up of approximately 4,000 drifting floats, which provide valuable information about the ocean and its role in the climate system. Each one of these floats work in continuous cycles, until their batteries run out. Due to its importance in operational forecasting and climate research, the Argo community continually assesses the status of the sensors mounted on each of the floats. Recovering floats would offer a great opportunity to gain insight into sensor performance and stability, although the economic and environmental costs of dedicating a ship exclusively to recover Argo floats make it unsustainable. In this work, the potential of world shipping traffic as float retrievers has been evaluated through an analysis of encounters based on the Automatic Identification System (AIS) of ships and the location of Argo floats in the years 2019 and 2020. About 18,500 and 28,500 encounters happened for both years, respectively. The Mediterranean Sea hosted the most encounters, and fishing ships were the most suitable type of ship aimed for potential recoveries. A total of 298 and 373 floats interacted with the world shipping traffic in favorable weather conditions in 2019 and 2020, respectively, a figure equivalent to 25% of the annual replacement rate of the Argo network. The same approach was applied to 677 floats affected by abrupt salinity drift (ASD), an issue that has recently come to the attention of the Argo community. It turned out that 59 and 103 ASD-affected floats interacted with ships of opportunity in both years.

Funder

European Commission

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference33 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3