Genome-Wide SNP Data Revealed Notable Spatial Genetic Structure in the Deep-Sea Precious Coral Corallium japonicum

Author:

Takata Kenji,Iwase Fumihito,Iguchi Akira,Yuasa Hideaki,Taninaka Hiroki,Iwasaki Nozomu,Uda Kouji,Suzuki Tomohiko,Nonaka Masanori,Kikuchi Taisei,Yasuda Nina

Abstract

Estimating the spatial extent of gamete and larval dispersal of deep-sea coral species, is challenging yet important for their conservation. Spatial autocorrelation analysis is useful for estimating the spatial range of dispersal of corals; however, it has not been performed for deep-sea coral species using genome-wide single nucleotide polymorphisms (SNPs). In this study, we examined the spatial genetic structure of a deep-sea coral species—the Japanese red coral, Corallium japonicum, sampled off the coast of Kochi, which lies to the southwest of the Shikoku Island in Japan; the Kochi region suffers from over-harvesting because of its high commercial value. We also examined the power of detecting significant spatial genetic structure by changing the number of loci and the proportion of missing data using both de novo analysis and mapping analysis. Similar results were obtained for both de novo and mapping analysis, although a higher number of loci were obtained by the mapping method. In addition, “many SNPs with a lot of missing data” was generally more useful than “a small number of SNPs with a small amount of missing data” to detect significant fine-scale spatial genetic structure. Our data suggested that more than 700 neutral SNPs were needed to detect significant fine-scale spatial genetic structure. The maximum first distance class that can detect significant spatial genetic structure within Kochi for the C. japonicum population was less than 11 km, suggesting that the over-harvesting of C. japonicum within a diameter of approximately 11 km in the Kochi area should be avoided, because this can cause the local extinction of this species.

Funder

Japan Society for the Promotion of Science

Sumitomo Foundation

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3