Exploring the Use of Seabirds as a Dynamic Ocean Management Tool to Mitigate Anthropogenic Risk to Large Whales

Author:

Silva Tammy L.,Powers Kevin D.,Robbins Jooke,Asmutis-Silvia Regina,Cole Timothy V. N.,Hill Alex N.,Howes Laura J.,Mayo Charles A.,Schulte Dianna,Thompson Michael A.,Welch Linda J.,Zerbini Alexandre N.,Wiley David N.

Abstract

Vessel strike and entanglement in fishing gear are global threats to large whales. United States management actions to reduce human-induced serious injury and mortality to large whales have been inadequate, partially due to static, spatial protection schemes that fail to adjust to distribution shifts of highly mobile animals. Whale conservation would benefit from dynamic ocean management, but few tools exist to inform dynamic approaches. Seabirds are often found in association with whales and can be tagged at lower cost and in higher numbers than whales. We explored the use of satellite-tagged seabirds (great shearwaters) as dynamic ocean management tools for near real-time identification of habitats where humpback and North Atlantic right whales aggregate, potentially increasing anthropogenic risk. We identified shearwater habitat use areas in the Gulf of Maine with 50% kernel density utilization distributions at yearly, monthly, and weekly scales using satellite-telemetry data from 2013-2018. We quantified overlap using whale sightings and whale satellite telemetry data at two spatial scales: Stellwagen Bank National Marine Sanctuary and the Gulf of Maine. Within the sanctuary, shearwaters overlapped with >50% of humpback sightings in 4 of 6 (67%) years, 15 of 23 (65%) months, and 50 of 89 (56%) of weeks. At the Gulf of Maine scale, shearwater use areas overlapped >50% of humpback sightings in 5 of 6 years (83%) and 16 of 22 (73%) months, and encompassed humpback 50% utilization distributions (based on satellite telemetry) in 2 of 3 (66%) years and 7/12 (58%) months analyzed. Overlap between shearwaters and right whales was much lower, with >50% overlap in only 1 of 6 (17%) years and 3 of 23 (13%) months. These initial results demonstrate that satellite-tagged shearwaters can be indicators of humpback whale habitat use in both space and time. With further study, tagged shearwaters may provide near-real time information necessary to operationalize dynamic management to mitigate human impacts on humpback whales.

Funder

Bureau of Ocean Energy Management

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3