Author:
Campana Sara,Hudspith Meggie,Lankes David,de Kluijver Anna,Demey Celine,Schoorl Jorien,Absalah Samira,van der Meer Marcel T. J.,Mueller Benjamin,de Goeij Jasper M.
Abstract
Sponges play a key role in (re)cycling of dissolved organic matter (DOM) and inorganic nutrients in coral reef ecosystems. Macroalgae and corals release different quantities of DOM and at different bioavailabilities to sponges and their microbiome. Given the current coral- to algal-dominance shift on coral reefs, we assessed the differential processing of macroalgal- and coral-DOM by three high and three low microbial abundance (HMA and LMA) encrusting sponge species. We followed the assimilation of naturally sourced 13C- and 15N-enriched macroalgal- and coral-DOM into bulk tissue and into host- versus bacteria-specific phospholipid fatty acids (PLFAs). Additionally, we compared sponge-processing of the two natural DOM sources with 13C- and 15N-enriched laboratory-made diatom-DOM. All investigated sponges utilized all DOM sources, with higher assimilation rates in LMA compared to HMA sponges. No difference was found in carbon assimilation of coral- versus macroalgal-DOM into bulk tissue and host- versus bacteria-specific PLFAs, but macroalgal nitrogen was assimilated into bulk tissue up to eight times faster compared to the other sources, indicating its higher bioavailability to the sponges. Additionally, LMA sponges released significantly more inorganic nitrogen after feeding on macroalgal-DOM. Therefore, we hypothesize that, depending on the abundance and composition of the sponge community, sponges could catalyze reef eutrophication through increased turnover of nitrogen under coral-to-algal regime shifts.
Funder
H2020 European Research Council
Subject
Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献