Development of integrated multitrophic aquaculture–based cage rearing system in an underutilized fishing port and its application in marine stock enhancement

Author:

Lee Hung-Tai,Chang Yung-Cheng,Liao Cheng-Hsin,Hsu Te-Hua

Abstract

Human activity and global climate change have severely affected marine ecosystems and fishery resources. Habitat conservation and stock enhancement are considered effective methods. Moreover, with the gradual disappearance of fishery resources, fishing ports have become underutilized spaces. Currently, 73 of the 221 fishing ports in Taiwan are underutilized. Therefore, we, for the first time, developed an integrated multitrophic aquaculture (IMTA)-based cage rearing system suitable for stock enhancement and applied it in an optimal underutilized fishing port after the site evaluation and selection of 17 potential fishing ports fishing. We further tested that hypothesis that hatchery-produced organisms can be reared and monitored appropriately in this cage rearing system with good survival and growth as well as less environmental impact and handling stress. Through the collocation of various release organisms of different trophic levels, the cage rearing system can reduce environmental impacts as evidenced by the steady water quality (stable pH and undetectable levels of ammonia nitrogen, nitrates, and nitrites). As for the fish welfare, this semiartificial rearing system could also reduce the discomforts of hatchery-produced organisms after transportation and facilitate their adaptations to the released environments as evidenced by positive growth and high survival rates (94%–98%). The cultured and naturally grown shellfish and algae on the cage nets could provide habitats for hatchery-produced and wild organisms that facilitate habitat conservation and stock enhancement. Taken together, we have demonstrated that it is feasible to implement this novel IMTA-based cage rearing system in an underutilized fishing port required for marine stock enhancement.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3