Energy fluxes and vertical heat transfer in the Southern Baltic Sea

Author:

Rak Daniel,Przyborska Anna,Bulczak Anna I.,Dzierzbicka-Głowacka Lidia

Abstract

IntroductionThis study investigates the dynamics of energy fluxes and vertical heat transfer in the Southern Baltic Sea, emphasizing the significant role of the dicothermal layer in modulating the penetration of the thermocline and the propagation rates of thermal energy. The research aims to elucidate the complex patterns of solar energy absorption, its conversion into sea surface temperature (SST), and the transference of this energy deeper into the marine environment.MethodsData were collected through 93 monitoring cruises by the Institute of Oceanology of the Polish Academy of Sciences (IOPAN) from 1998 to 2023, using a high-resolution towed probe technique alongside Argo floats data for the Baltic Proper from 2020 to 2023. ERA5 climate reanalysis dataset and NEMOv4.0 ocean model forecasts were also utilized for a comprehensive analysis of VITE, Top Net Short-Wave Radiation, SST, and energy budget across the Southern Baltic Sea.Results and discussionThe Southern Baltic Sea functions as a net energy sink, with an average energy budget of 5.48 W m-2, predominantly absorbing energy during daylight and emitting it from September to February. A 59-day lag between peak solar energy and VITE peak was observed, followed by an additional 6-day delay before peak SST. The study further reveals a 15-day delay in temperature phase shift per 10 meters depth due to the dicothermal layer's influence on thermal energy propagation, extending to 35 days in the Central and Northern Baltic. Heat transfer is significantly affected by the levels of the thermocline and halocline, with regional variations in advection-driven seasonal signals. The pronounced thermal inertia and the critical role of the dicothermal layer underscore the complexity of thermal energy distribution in the Southern Baltic Sea.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3