Phenological divergence, population connectivity and ecological differentiation in two allochronic seabird populations

Author:

Medrano Fernando,Militão Teresa,Gomes Ivandra,Sardà-Serra Mariona,de la Fuente Mònica,Dinis Herculano A.,González-Solís Jacob

Abstract

Phenological divergence between conspecific populations breeding sympatrically is increasingly recognized as an important evolutionary process that may lead to allochronic speciation. However, the extent to which adaptation to differences in the timing of breeding may contribute to this process remains unclear. In this study, we assessed breeding phenology, population connectivity, and niche differentiation of two allochronic populations we of the Cape Verde Storm-petrel (Hydrobates jabejabe). We monitored nesting activity, marked individuals, tracked individuals during both the breeding and nonbreeding periods, and determined the trophic niche during both the breeding and nonbreeding periods. Timing of breeding for the two allochronic populations segregated into a hot (March-August) and cool (September-February) season (hereafter, hot and cool populations). These periods matched the two annual pulses of oceanic productivity around Cabo Verde, suggesting allochrony was primarily driven by a biannual cyclicity in food availability. Despite their allochronic breeding, there was, however, low differentiation between the hot and cool populations in spatial use, daily activity patterns, and trophic niche during both the breeding and nonbreeding periods. Further, the exchange of breeders between seasons, as documented through the recapture of marked individuals, may hinder seasonal adaptation by each population and ultimately, allochronic speciation. Consequently, allochrony alone may not be sufficient to drive speciation unless reproductive isolation between populations is complete or populations become strongly adapted to the environmental conditions associated with their timing of breeding.

Funder

Agencia Nacional de Investigación y Desarrollo

MAVA Foundation

Institució Catalana de Recerca i Estudis Avançats

Ministerio de Economía y Competitividad

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3