Plant trait-mediated drag forces on seedlings of four tidal marsh pioneer species

Author:

Steinigeweg Charlotte S.,Löbel Swantje,Schröder Boris,Schoutens Ken,Reents Svenja,Evans Ben R.,Temmerman Stijn,Bouma Tjeerd J.,Möller Iris,Paul Maike

Abstract

Salt marshes play an important role in coastal protection by reducing the impact of waves and shoreline erosion risks. While mature vegetation is responsible for the persistence and stability of marsh ecosystems, seedling survival of pioneer species is especially crucial for marsh propagation. Marsh seedlings, however, may be threatened by climate change induced increased coastal storm surge intensity and accompanying (extreme) wave conditions, imposing stronger drag forces on marsh seedlings. We test the hypothesis that drag forces experienced by seedlings increase with horizontal orbital velocity (Uw) in a species-specific manner, and that the drag forces experienced are individual-plant trait-mediated. To test our hypotheses, seedlings of four contrasting pioneer marsh species (Bolboschoenus maritimus, Schoenoplectus tabernaemontani, Spartina anglica, and Puccinellia maritima) were exposed to storm wave conditions in a flume, where Uw and experienced drag forces were measured. Linear mixed effect models demonstrated that seedling’s susceptibility to storm wave conditions is at least partly mediated by individual plant traits. Drag forces experienced by seedlings tended to increase with Uw, and with stem length and diameter. The interplay of both traits was complex, with increasing stem length being the most important trait accounting for increases in drag forces experienced at low to moderate Uw, while the stem diameter became more important with increasing Uw. Furthermore, experienced drag forces appeared to be affected by species-specific traits such as rigidity and leaf growth, being highest for Bolboschoenus maritimus and lowest for Puccinellia maritima. Our results provide important mechanistic insights into the drivers of tidal marsh seedling vulnerability to storm wave conditions due to experienced drag, both based on the traits of individual plants and species-specific ones. This type of knowledge is of key importance when modelling saltmarsh establishment and resilience under climate change.

Funder

Niedersächsisches Ministerium für Wissenschaft und Kultur

Volkswagen Foundation

Horizon 2020

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3