Author:
Hong Ji-Seok,Moon Jae-Hong,Kim Taekyun,You Sung Hyup,Byun Kun-Young,Eom Hyunmin
Abstract
A pronounced increase in the intensification of Typhoon Bavi in 2020 was detected when the typhoon passed over the Changjiang plume in the northern East China Sea. Using a coupled atmosphere-ocean modeling system, this study investigates the role of the plume-induced barrier layer (BL) in the air–sea interaction during the intensification of a typhoon. Simple comparative experiments with and without the river plume revealed a strong relationship between BL formation and typhoon intensification as a result of the significant surface freshening discharged from the Changjiang River. The plume-induced BL maintained a warm sea surface before the typhoon approached, thereby influencing the energy transfer at the air–sea interface. The enthalpy and moisture reaching the atmosphere were increased by approximately 20%, leading to the intensification of Typhoon Bavi and providing further support for the results observed in the best-track record. The model comparison also indicates that the salinity-induced BL led to the reduction of the typhoon-induced SST cooling by restricting the vertical diffusion between the surface and the thermocline, and consequently contributed to maintaining the typhoon intensity. This study suggests that the effect of river-induced surface freshening in a coupled atmosphere-ocean model may help in improving typhoon forecasts and may aid in mitigating against the destructive power of typhoons in the future.
Subject
Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献