Exploring the pore fluid origin and methane-derived authigenic carbonate properties in response to changes in the methane flux at the southern Ulleung Basin, South Korea

Author:

Kim Ji-Hoon,Park Myong-Ho,Ryu Jong-Sik,Jang Kwangchul,Choi Jiyoung,Park Sanghee,Song Yungoo,Yi Bo-Yeon,Joo Young Ji,Kim Tae-Hoon,Hur Jin

Abstract

We investigated the geochemistry of gas, pore fluid, and methane-derived authigenic carbonate (MDAC) from four sites in the southern Ulleung Basin, South Korea. In contrast to Sites 16GH-P1 and 16GH-P5, Sites 16GH-P3, and 16GH-P4 are characterized by acoustic chimney structures associated with gas flux. The composition of gas and isotopic signatures of methane (CH4) (C1/C2+ > 300, δ13CCH4 < -60‰, δDCH4 ≤ -190‰) indicate microbial source CH4 at all sites. The upward migration of CH4 can affect the chemical and isotopic properties of pore fluid and gas-related byproducts (e.g., gas hydrate (GH) and MDAC) within the shallow sediments including the current sulfate-methane transition (SMT) (< 5 meters below seafloor). Although no GH was found, elevated Cl- concentrations (maximum = 609 mM) with low δD and δ18O values in Site 16GH-P4 pore fluids delineate the influence of massive GH formation in deeper sediment. In contrast, relatively constant Cl-, δD, and δ18O values in fluids from Sites 16GH-P1, 16GH-P3, and 16GH-P5 indicate a predominant origin from seawater. Pore fluids also exhibit higher concentrations of H4SiO4, B, Mg2+, and K+, along with increasing alkalinity compared to seawater. These observations suggest that marine silicate weathering alters fluid chemistry within the sediment, affecting element and carbon cycles. High alkalinity (up to 60 mM) and Mg2+/Ca2+ ratios (> 6) alongside decreasing Ca2+ and Sr2+ concentrations imply carbonate precipitation. MDACs with diverse morphologies, mainly composed of aragonite and magnesian calcite, and characterized by low carbon isotopic values (δ13CMDAC < -31.3‰), were found at Sites 16GH-P3 and 16GH-P4. Interestingly, δ13CMDAC values at Site 16GH-P3 are clearly differentiated above and below the current SMT. High δ13CMDAC values above the SMT (> -34.3‰) suggest the combined influence of seawater and CH4 migrating upward on MDAC precipitation, whereas low δ13CMDAC values below it (< -41.6‰) indicate a predominant impact of CH4 on MDAC formation. Additionally, the vertical variation of δ18OMDAC values at Site 16GH-P4, compared to the theoretical values, reflects an association with GH dissociation and formation. Our findings improve the understanding of fluid, gas, and MDAC geochemistry in continental margin cold seeps, providing insights into global carbon and element cycles.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3