Seasonal and Spatial Variability in the Biogenic Production and Consumption of Volatile Organic Compounds (VOCs) by Marine Plankton in the North Atlantic Ocean

Author:

Davie-Martin Cleo L.,Giovannoni Stephen J.,Behrenfeld Michael J.,Penta William B.,Halsey Kimberly H.

Abstract

Marine-derived volatile organic compounds (VOCs) influence global carbon cycling, atmospheric reactions, and climate. Yet, the biogenic production (sources) and consumption (sink) rates of marine VOCs are not well-constrained and are currently excluded from global chemical transport models. We directly measured the net biogenic production rates of seven VOCs (acetaldehyde, acetone, acetonitrile, dimethylsulfide, isoprene, methanethiol, and methanol) in surface seawater during four field campaigns in the North Atlantic Ocean that targeted different stages of the phytoplankton annual cycle. All of the VOCs exhibited strong seasonal trends, with generally positive rates during May (peak spring bloom) and lower, sometimes negative rates (net consumption), during November and/or March (the winter bloom minimum transition). Strong latitudinal gradients were identified for most VOCs during May and September, with greater production observed in the northern regions compared to the southern regions. These gradients reflect the interplay between high phytoplankton and bacterial productivity. During the bloom transition stages (March and September), acetaldehyde and acetone exhibited net production rates that bracketed zero, suggesting that biogenic production was either very low or indicative of a tightly coupled system with more complex underlying microbial VOC cycling. Our data provides the first direct evidence for widespread biogenic acetonitrile production and consumption in the surface ocean and the first net biogenic production rates for methanethiol in natural seawater.

Funder

National Aeronautics and Space Administration

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3