Differential effects of warming and acidification on chemosensory transmission and detection may strengthen non-consumptive effects of blue crab predators (Callinectes sapidus) on mud crab prey (Panopeus herbstii)

Author:

Draper Alex M.,Weissburg Marc J.

Abstract

Predators control prey abundance and behavior, both of which strongly influence community dynamics. However, the relative importance of these predator effects may shift with climate change stressors, suggesting understanding the potential effects on these different processes is critical to predicting effects of climate change on community function. We investigated the effects of global warming and ocean acidification on the transmission and detection of chemical cues from blue crab predators (Callinectes sapidus) by mud crab prey (Panopeus herbstii). We measured mud crab feeding rates in the presence of blue crab predator cues, using either predator cues stressed in acidified conditions or mud crabs stressed in warmed and acidified conditions. Mud crabs consumed less food in the presence of predator cues, but acidifying the cues or subjecting mud crabs receiving the cues to acidified environment did not affect this antipredator response. Mud crabs in warmed conditions consumed significantly less food regardless of predator cue, but this effect was reversed in ambient conditions. Therefore, climate change may produce shifts in community regulation as warming potentially compromises consumptive effects of predators by reducing motor function, whereas non-consumptive effects mediated by sensory transmission and detection remain unaffected by acidification. Overall, warming may have stronger effects than acidification on community dynamics in oyster reefs as global temperatures continue to rise.

Funder

National Science Foundation

Georgia Sea Grant, University of Georgia

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference62 articles.

1. Fitting linear mixed-effects models using lme4;Bates;J. Stat. Software,2015

2. Oyster reefs at risk and recommendations for conservation, restoration, and management;Beck;BioScience,2011

3. Exoskeleton dissolution with mechanoreceptor damage in larval dungeness crab related to severity of present-day ocean acidification vertical gradients;Bednaršek;Sci. Total Environ.,2020

4. Predation on single spat oysters crassostrea virginica by blue crabs callinectes sapidus and mud crabs, panopeus herbstii;Bisker;J. Shellfish Res.,1987

5. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the satilla and altamaha rivers, Georgia;Cai;Limnol Oceanog,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3