Evolution of marine heatwaves in warming seas: the Mediterranean Sea case study

Author:

Martínez Justino,Leonelli Francesca Elisa,García-Ladona Emilio,Garrabou Joaquim,Kersting Diego K.,Bensoussan Nathaniel,Pisano Andrea

Abstract

Anomalous warming of the upper ocean is increasingly being observed in the Mediterranean Sea. Extreme events, known as marine heatwaves (MHWs), can have a profound impact on marine ecosystems, and their correct detection and characterization are crucial to define future impact scenarios. Here, we analyze MHWs observed over the last 41 years (1982–2022) in the Mediterranean sea surface temperatures (SSTs). We show that the intensification in frequency, intensity, and duration of Mediterranean MHWs in recent years is mainly due to a shift in SST mean that occurred in the last two decades and largely reduced when analyzing detrended SST data. Detrending thus allows the use of a fixed climatology without overestimating MHW properties over time and distinguishes long-term warming (i.e., trend) from transient and abrupt SST changes. Analogous results are also found over a shorter temporal period, by analyzing 13 years (2007–2020) of in situ data collected at different depths (5 to 40 m) at Columbretes Islands. Additionally, the in situ analysis reveals that atmospheric summer heatwaves could affect a layer of 10 m in depth. Lastly, a catalogue of the major Mediterranean MHWs that have occurred since 1982 is presented. This catalogue evidences an exceptionally long-lasting and intense MHW, starting in May 2022 and persisting, at least, until the end of the year, resulting in the event with the highest cumulative intensity just after the well-known 2003 MHW event.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference69 articles.

1. Marine heatwaves need clear definitions so coastal communities can adapt;Amaya;Nature,2023

2. Analysis of alpine precipitation extremes using generalized extreme value theory in convection-resolving climate simulations;Ban;Climate Dynamics,2020

3. Mass mortality of paramuricea clavata (Anthozoa, cnidaria) on portofino promontory cliffs, ligurian Sea, Mediterranean Sea;Bavestrello;Mar. Life,1994

4. Insights on 2017 marine heat waves in the Mediterranean sea. copernicus marine service ocean state report: issue 3;Bensoussan;J. Operational Oceanography,2019

5. Investigation of black sea mean sea level variability by singular spectrum analysis;Beşel;Int. J. Eng. Geosciences,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3