Author:
Sullender Benjamin K.,Kapsar Kelly,Poe Aaron,Robards Martin
Abstract
The Aleutian Archipelago and surrounding waters have enormous ecological, cultural, and commercial significance. As one of the shortest routes between North American and Asian ports, the North Pacific Great Circle Route, which crosses through the Aleutian Archipelago, is traveled by thousands of large cargo ships and tanker vessels every year. To reduce maritime risks and enhance navigational safety, the International Maritime Organization built upon earlier offshore routing efforts by designating five Areas To Be Avoided (ATBAs) in the Aleutian Islands in 2016. The ATBAs are designed to keep large vessels at least 50 nautical miles (93 km) from shore unless calling at a local port or transiting an authorized pass between islands. However, very few studies have examined the effectiveness of ATBAs as a mechanism for changing vessel behavior and thereby reducing the ecological impacts of maritime commerce. In this study, we use 4 years of satellite-based vessel tracking data to assess the effectiveness of the Aleutian ATBAs since their implementation in 2016. We determined whether vessels transiting the North Pacific Great Circle Route changed behavior after ATBA implementation, both in terms of overall route selection and in terms of compliance with each ATBA boundary. We found a total of 2,252 unique tankers and cargo vessels >400 gross tons transited the study region, completing a total of 8,794 voyages. To quantify routing changes of individual vessels, we analyzed the 767 vessels that transited the study region both before and after implementation. The percentage of voyages transiting through the boundaries of what would become ATBAs decreased from 76.3% in 2014–2015 (prior to ATBA designation) to 11.8% in 2016–2017 (after implementation). All five Aleutian ATBAs had significant increases in compliance, with the West ATBA showing the most dramatic increase, from 32.1% to 95.0%. We discuss the framework for ATBA enforcement and highlight the value of local institutional capacity for real-time monitoring. Overall, our results indicate that ATBAs represent a viable strategy for risk mitigation in sensitive ecological areas and that through monitoring, spatial protections influence vessel route decisions on multiple spatial scales.
Subject
Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献