Author:
Lin Chia-Hao,Chang Hung-Chi,Liu Sian-Tai,Hu Huei-Jyun
Abstract
Freshwater teleosts frequently face the stress of varied ion and pH levels; therefore, they have developed related defense mechanisms to maintain the homeostasis of body-fluid ion and acid-base balance. The different subtypes of ionocytes expressed in the branchial epithelium of adult fish or the skin of larvae are the major sites for fish ion regulation. 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), the bioactive form of vitamin D, is a steroid hormone that is involved in the regulation of Ca2+ uptake and acid secretion in teleosts. Our results revealed that 1α,25(OH)2D3 levels were not changed in zebrafish larvae upon exposure to low Na+ freshwater compared to normal freshwater. In contrast, 1α,25(OH)2D3 levels were substantially higher in fish exposed to acidic and low Ca2+ freshwater than in those exposed to normal freshwater. Some hormones regulate ion regulation and acid secretion by modulating ionocyte differentiation and/or proliferation in teleosts; however, the role of vitamin D in this process is unclear. Zebrafish larvae were used as a model in the present study to explore the effect of vitamin D on ionocyte proliferation and/or differentiation. The present study indicated that 1α,25(OH)2D3 treatment increased the number of foxi3a-positive cells, ionocyte progenitors, and mature ionocytes. However, the number of P63-positive epidermal stem cells did not change in the zebrafish larvae treated with 1α,25(OH)2D3. These results revealed that vitamin D exerts a positive effect on the number of ionocytes by increasing the differentiation of ionocytes. Increased ionocyte differentiation by vitamin D is suggested to elevate the capacity of ion regulation and acid secretion in zebrafish to cope with external stress. The present findings indicate the role of vitamin D in the regulation of ionocyte differentiation and provide new insights into the mechanisms of stress adaptation of fish.
Subject
Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Ammonia exposure impairs bone mineralization in zebrafish (Danio rerio) larvae;Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology;2025-01
2. Vitamin D is involved in the regulation of Cl− uptake in zebrafish (Danio rerio);Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology;2024-10