Pathways of methane removal in the sediment and water column of a seasonally anoxic eutrophic marine basin

Author:

Żygadłowska Olga M.,Venetz Jessica,Klomp Robin,Lenstra Wytze K.,van Helmond Niels A. G. M.,Röckmann Thomas,Wallenius Anna J.,Martins Paula Dalcin,Veraart Annelies J.,Jetten Mike S. M.,Slomp Caroline P.

Abstract

Methane (CH4) is a key greenhouse gas. Coastal areas account for a major proportion of marine CH4 emissions. Eutrophication and associated bottom water hypoxia enhance CH4 production in coastal sediments. Here, we assess the fate of CH4 produced in sediments at a site in a seasonally anoxic eutrophic coastal marine basin (Scharendijke, Lake Grevelingen, the Netherlands) in spring (March) and late summer (September) in 2020. Removal of CH4 in the sediment through anaerobic oxidation with sulfate (SO42-) is known to be incomplete in this system, as confirmed here by only slightly higher values of δ13C-CH4 and δD-CH4 in the porewater in the shallow sulfate-methane-transition zone (~5-15 cm sediment depth) when compared to deeper sediment layers. In March 2020, when the water column was fully oxygenated, CH4 that escaped from the sediment was at least partially removed in the bottom water through aerobic oxidation. In September 2020, when the water column was anoxic below ~35 m water depth, CH4 accumulated to high concentrations (up to 73 µmol L-1) in the waters below the oxycline. The sharp counter gradient in oxygen and CH4 concentrations at ~35 m depth and increase in δ13C-CH4 and δD-CH4 above the oxycline indicate mostly aerobic water column removal of CH4. Water column profiles of particulate and dissolved Fe and Mn suggest redox cycling of both metals at the oxycline, pointing towards a potential role of metal oxides in CH4 removal. Water column profiles of NH4+ and NO3- indicate removal of both solutes near the oxycline. Analyses of 16S rRNA gene sequences retrieved from the water column reveal the presence of aerobic CH4 oxidizing bacteria (Methylomonadaceae) and anaerobic methanotrophic archaea (Methanoperedenaceae), with the latter potentially capable of NO3- and/or metal-oxide dependent CH4 oxidation, near the oxycline. Overall, our results indicate sediment and water column removal of CH4 through a combination of aerobic and anaerobic pathways, which vary seasonally. Some of the CH4 appears to escape from the surface waters to the atmosphere, however. We conclude that eutrophication may make coastal waters a more important source of CH4 to the atmosphere than commonly assumed.

Funder

European Research Council

Netherlands Earth System Science Centre

Soehngen Institute of Anaerobic Microbiology

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3