Simultaneous restoration and super-resolution GAN for underwater image enhancement

Author:

Wang Huiqiang,Zhong Guoqiang,Sun Jinxuan,Chen Yang,Zhao Yuxiao,Li Shu,Wang Dong

Abstract

Underwater images are generally of low quality, limiting the performance of subsequent perceptual tasks, such as underwater object detection and recognition. However, only a few methods can improve the quality of underwater images by simultaneously restoring and super-resolving underwater images. In this paper, we propose an end-to-end trainable model based on generative adversarial networks (GANs) called Simultaneous Restoration and Super-Resolution GAN (SRSRGAN) to obtain clear super-resolution underwater images automatically. In particular, our model leverages a cascaded architecture with two stages of carefully designed generative adversarial networks to restore and super-resolve corrupted underwater images in a coarse-to-fine manner. The major advantages of SRSRGAN are twofold. First, it is a unified solution that can simultaneously restore and super-resolve images. Second, SRSRGAN is not limited by the prior experience of the types and levels of underwater degraded images but can perform the inference using only observed corrupted images. These two advantages enable SRSRGAN to enjoy better flexibility and higher practicability in realistic underwater scenarios. Extensive experimental results demonstrate the superiority of SRSRGAN in underwater image restoration, super-resolution, and simultaneous restoration and super-resolution.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Shandong Province

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference79 articles.

1. Underwater image dehazing using global color features;Alenezi;Eng. Appl. Artif. Intell.,2022

2. Color balance and fusion for underwater image enhancement;Ancuti;IEEE Trans. Image Process.,2018

3. Super resolution recovery for multi-camera surveillance imaging;Caner;International Conference on Multimedia and Expo,2003

4. Super-resolution from multiple views using learnt image models;Capel;IEEE Conference on Computer Vision and Pattern Recognition,2001

5. Recovering super-resolution generative adversarial network for underwater images;Chen;Neural Information Processing,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3